Search results
Results from the WOW.Com Content Network
Python supports most object oriented programming (OOP) techniques. It allows polymorphism, not only within a class hierarchy but also by duck typing. Any object can be used for any type, and it will work so long as it has the proper methods and attributes. And everything in Python is an object, including classes, functions, numbers and modules.
Python's runtime does not restrict access to such attributes, the mangling only prevents name collisions if a derived class defines an attribute with the same name. On encountering name mangled attributes, Python transforms these names by prepending a single underscore and the name of the enclosing class, for example: >>>
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [33] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...
There are subtle differences and distinctions in the use of the terms "generator" and "iterator", which vary between authors and languages. [5] In Python, a generator is an iterator constructor: a function that returns an iterator. An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement ...
In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state and behavior that are each either associated with a particular object or with all objects of that class.
In Object Pascal, all classes descend from the base TObject class, which implements basic RTTI functionality. Every class's name can be referenced in code for RTTI purposes; the class name identifier is implemented as a pointer to the class's metadata, which can be declared and used as a variable of type TClass.