Search results
Results from the WOW.Com Content Network
Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength , breaking strength , maximum elongation and reduction in area. [ 2 ]
It is a generalized form of tensile testing in which the material sample is simultaneously stressed along two perpendicular axes. Typical materials tested in biaxial configuration include metal sheets, [1] silicone elastomers, [2] composites, [3] thin films, [4] textiles [5] and biological soft tissues. [6] An example of a biaxial tensile machine.
Tensile test. A standard specimen is subjected to a gradually increasing load (force) until failure occurs. The resultant load-displacement behaviour is used to determine a stress–strain curve, from which a number of mechanical properties can be measured.
Compact tension specimens are used extensively in the area of fracture mechanics and corrosion testing, in order to establish fracture toughness and fatigue crack growth data for a material. The purpose of using a notched sample is to create a fatigue crack by applying cyclic loading through pins inserted into the holes on the sample using a ...
English: The video illustrates an experimental investigation performed on steel samples, i.e. tensile steel testing. It is to be noted that the video was obtained using the pictures shot during the test, and the test was not performed that fast. results are shown in the end in terms of stress-strain curves for each of the three tested steel samples.
One example is the long used Sustained Load Test of notched round bar tensile specimens found in ASTM F 519. In this test, the exposed test specimens are subjected to a load equal to 75% of the Fracture Strength and held for 200 hours. If the specimen does not break, the specimen has passed. If it fractures prior to the 200 hours then it has ...
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Conditioning - Many tests require controlled conditioning (temperature, humidity, pressure, etc.). The machine can be in a controlled room or a special environmental chamber can be placed around the test specimen for the test. Test fixtures, specimen holding jaws, and related sample making equipment are called for in many test methods.