Search results
Results from the WOW.Com Content Network
It is the third (or second) dodecahedral number, [4] and the sum of the first seven triangular numbers (1, 3, 6, 10, 15, 21, 28), which makes it the seventh tetrahedral number. [5] The number of divisors of 84 is 12. [6] As no smaller number has more than 12 divisors, 84 is a largely composite number. [7]
Demonstration, with Cuisenaire rods, of the abundance of the number 12. In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number.
factors d(n) primorial ... 10 84 24 25200 4,2,2,1 9 ... Also, except in two special cases n = 4 and n = 36, the last exponent c k must equal 1. It means that 1, 4 ...
In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer. When a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b.
231 is also a multiple of 3: one has 231 = 3 · 77, and thus n = 2 · 3 2 · 77. Continue with 77, and 3 as a first divisor candidate. 77 is not a multiple of 3, since the sum of its digits is 14, not a multiple of 3. It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7.
Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π. Quadratic surd: A root of a quadratic equation with rational coefficients. Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number.
= 4.2 3 × 10 −4 m/s 2: inch per second squared: ips 2: ≡ 1 in/s 2 = 2.54 × 10 −2 m/s 2: knot per second: kn/s ≡ 1 kn/s ≈ 5.1 4 × 10 −1 m/s 2: metre per second squared (SI unit) m/s 2: ≡ 1 m/s 2 = 1 m/s 2: mile per hour per second: mph/s ≡ 1 mi/(h⋅s) = 4.4704 × 10 −1 m/s 2: mile per minute per second: mpm/s ≡ 1 mi/(min ...
lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd( m , n ) × lcm( m , n ) = m × n . Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.