enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero.

  3. Hollow matrix - Wikipedia

    en.wikipedia.org/wiki/Hollow_matrix

    A hollow matrix may be a square matrix whose diagonal elements are all equal to zero. [3] That is, an n × n matrix A = (a ij) is hollow if a ij = 0 whenever i = j (i.e. a ii = 0 for all i). The most obvious example is the real skew-symmetric matrix. Other examples are the adjacency matrix of a finite simple graph, and a distance matrix or ...

  4. Main diagonal - Wikipedia

    en.wikipedia.org/wiki/Main_diagonal

    In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix is the list of entries , where =. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones:

  5. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Signature matrix: A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix

  6. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If A {\textstyle A} is a real skew-symmetric matrix and λ {\textstyle \lambda } is a real eigenvalue , then λ = 0 {\textstyle \lambda =0} , i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real.

  7. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    An atomic (upper or lower) triangular matrix is a special form of unitriangular matrix, where all of the off-diagonal elements are zero, except for the entries in a single column. Such a matrix is also called a Frobenius matrix , a Gauss matrix , or a Gauss transformation matrix .

  8. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator [ 1 ] represented in an orthonormal basis over a real inner product space .

  9. Anti-diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Anti-diagonal_matrix

    In mathematics, an anti-diagonal matrix is a square matrix where all the entries are zero except those on the diagonal going from the lower left corner to the upper right corner (↗), known as the anti-diagonal (sometimes Harrison diagonal, secondary diagonal, trailing diagonal, minor diagonal, off diagonal or bad diagonal).