Search results
Results from the WOW.Com Content Network
The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]
In chemistry, a pnictogen bond (PnB) is a non-covalent interaction, occurring where there is a net attractive force between an electrophilic region on a 'donor' pnictogen atom (Pn) in a molecule, and a nucleophilic region on an 'acceptor' atom, which may be in the same or another molecule. [1]
In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]
Similar to these other non-covalent bonds, cation–π interactions play an important role in nature, particularly in protein structure, molecular recognition and enzyme catalysis. The effect has also been observed and put to use in synthetic systems. [1] [2] The π system above and below the benzene ring leads to a quadrupole charge distribution.
Non-covalent – no chemical bonds are formed between the two interacting molecules hence the association is fully reversible Reversible covalent – a chemical bond is formed, however the free energy difference separating the noncovalently-bonded reactants from bonded product is near equilibrium and the activation barrier is relatively low ...
Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.
The Green Book is a direct successor of the Manual of Symbols and Terminology for Physicochemical Quantities and Units, originally prepared for publication on behalf of IUPAC's Physical Chemistry Division by M. L. McGlashen in 1969. A full history of the Green Book's various editions is provided in the historical introduction to the third edition.
Besides chemical bonds, compliance constants are also useful for determining non-covalent bonds, such as H-bonds in Watson-Crick base pairs. [17] Grunenberg calculated the compliance constant for each of the donor-H⋯acceptor linkages in AT and CG base pairs and found that the central N-H⋯N bond in CG base pair is the strongest one with the ...