Search results
Results from the WOW.Com Content Network
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).
1.438 776 877... × 10 −2 m⋅K: 0 [12] [e] Wien wavelength displacement law constant: 2.897 771 955... × 10 −3 m⋅K: 0 [13] ′ [f] Wien frequency displacement law constant: 5.878 925 757... × 10 10 Hz⋅K −1: 0 [14] Wien entropy displacement law constant 3.002 916 077... × 10 −3 m⋅K: 0
Standard form may refer to a way of writing very large or very small numbers by comparing the powers of ten. It is also known as Scientific notation . Numbers in standard form are written in this format: a×10 n Where a is a number 1 ≤ a < 10 and n is an integer.
Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.) This is the reason for the terminology "elementary charge": it is meant to imply that it is an indivisible unit of charge.
Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, 5.7 ± 0.2 may be anywhere in the range from 5.5 to 5.9 inclusive. In scientific usage, it sometimes refers to a probability of being within the stated interval, usually corresponding to either 1 or 2 standard deviations (a probability of 68.3% or 95.4% in a normal distribution ).
For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".