Search results
Results from the WOW.Com Content Network
Glycerol is a good alternative source for butanol production. While glucose sources are valuable and limited, glycerol is abundant and has a low market price because it is a waste product of biodiesel production. Butanol production from glycerol is economically viable using metabolic pathways that exist in the bacterium Clostridium pasteurianum ...
Butanol combustion: C 4 H 9 OH + 6O 2 → 4CO 2 + 5H 2 O + heat Propanol combustion: 2C 3 H 7 OH + 9O 2 → 6 CO 2 + 8H 2 O + heat The 3-carbon alcohol, propanol (C 3 H 7 OH), is not often used as a direct fuel source for petrol engines (unlike ethanol, methanol and butanol), with most being directed into use as a solvent. However, it is used ...
Syngas fermentation, also known as synthesis gas fermentation, is a microbial process.In this process, a mixture of hydrogen, carbon monoxide, and carbon dioxide, known as syngas, is used as carbon and energy sources, and then converted into fuel and chemicals by microorganisms.
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
The production of butanol by biological means was first performed by Louis Pasteur in 1861. [5] In 1905, Austrian biochemist Franz Schardinger found that acetone could similarly be produced. [ 5 ] In 1910 Auguste Fernbach (1860–1939) developed a bacterial fermentation process using potato starch as a feedstock in the production of butanol.
These bacteria begin with butyrate fermentation, as described above, but, when the pH drops below 5, they switch into butanol and acetone production to prevent further lowering of the pH. Two molecules of butanol are formed for each molecule of acetone. The change in the pathway occurs after acetoacetyl CoA formation.
Hydroxylation is the means by which the body processes many poisons, converting lipophilic compounds into hydrophilic derivatives that are more readily excreted. Enzymes called hydroxylases and oxidases facilitate these conversions. Many industrial alcohols, such as cyclohexanol for the production of nylon, are produced by hydroxylation.
1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C 4 H 9 OH and a linear structure. Isomers of 1-butanol are isobutanol, butan-2-ol and tert-butanol. The unmodified term butanol usually refers to the straight chain isomer.