Search results
Results from the WOW.Com Content Network
Transcription is the process of copying a segment of DNA into RNA for the purpose of gene expression.Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA).
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
Transcription is the process by which the information contained in a section of DNA is replicated in the form of a newly assembled piece of messenger RNA (mRNA). Enzymes facilitating the process include RNA polymerase and transcription factors. In eukaryotic cells the primary transcript is pre-mRNA. Pre-mRNA must be processed for translation to ...
Having established that transcription and translation are linked biochemically (translation depends on the product of transcription), an outstanding question remained whether they were linked physically - whether the newly synthesized mRNA released from the DNA before it is translated, or if can translation occur concurrently with transcription.
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
An open reading frame (ORF) is a reading frame that has the potential to be transcribed into RNA and translated into protein. It requires a continuous sequence of DNA which may include a start codon, through a subsequent region which has a length that is a multiple of 3 nucleotides, to a stop codon in the same reading frame.
To initiate the transcription process in a cell's nucleus, DNA double helices are unwound and hydrogen bonds connecting compatible nucleic acids of DNA are broken to produce two unconnected single DNA strands. [1] One strand of the DNA template is used for transcription of the single-stranded primary transcript mRNA.