Search results
Results from the WOW.Com Content Network
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
Type Escape velocity Mass Volume ()Lowest Highest Lowest Highest Lowest Highest Star: 617.7 km/s Sun [11]332,830 M Earth Sun [26] [27]695,000 km Sun [27]Major planet: 4.3 k m/s Mercury
Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. [47] Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin. [d] [48] A survey of solar analogs suggest the early Sun was rotating up to ten times faster than it does today. This ...
The lowest point on land not covered by liquid water is the canyon under Denman Glacier in Antarctica, with the bedrock being 3,500 m (11,500 ft) below sea level. [33] [34] The shore of the Dead Sea in Israel. The lowest point on dry land is the shore of the Dead Sea, shared by Israel, Palestine and Jordan, 432.65 m (1,419 ft) below sea level ...
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
Solar System – gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly. Of those objects that orbit the Sun directly, the largest eight are the planets (including Earth), with the remainder being significantly smaller objects, such as dwarf planets and small Solar System bodies.
These lists contain the Sun, the planets, dwarf planets, many of the larger small Solar System bodies (which includes the asteroids), all named natural satellites, and a number of smaller objects of historical or scientific interest, such as comets and near-Earth objects.
The Carrington heliographic coordinate system, established by Richard C. Carrington in 1863, rotates with the Sun at a fixed rate based on the observed rotation of low-latitude sunspots. It rotates with a sidereal period of exactly 25.38 days, which corresponds to a mean synodic period of 27.2753 days.