Search results
Results from the WOW.Com Content Network
Big data ethics – Ethics of mass data analytics; Big data maturity model – Aspect of computer science; Big memory – A large amount of random-access memory; Data curation – Organization of collected data; Data defined storage – Marketing term for managing data by combining application, information and storage tiers
The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage:
Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]
Typically, it cannot be easily obtained by direct examining raw big data without the aid of analytics methods and techniques. Actionable information obtained by software analytics steers or prescribes solutions that stakeholders in software engineering processes may take (e.g., software practitioners, development leaders, or C-level management).
A cloud-based architecture for enabling big data analytics. Data flows from various sources, such as personal computers, laptops, and smart phones, through cloud services for processing and analysis, finally leading to various big data applications. Cloud computing can offer access to large amounts of computational power and storage. [40]
Big data ethics, also known simply as data ethics, refers to systemizing, defending, and recommending concepts of right and wrong conduct in relation to data, in particular personal data. [1] Since the dawn of the Internet the sheer quantity and quality of data has dramatically increased and is continuing to do so exponentially.
The textbook is globally available in print (hardcover and softcover) and electronic formats (PDF and EPub) in many college and university libraries [9] and has been used for data science, computational statistics, and analytics classes at various institutions. [10]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.