enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]

  3. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: AB, BC, CD, DA.

  4. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    The square is one such quadrilateral, but there are infinitely many others. An orthodiagonal quadrilateral that is also equidiagonal is a midsquare quadrilateral because its Varignon parallelogram is a square. Its area can be expressed purely in terms of its sides.

  5. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    From the first proof, one can see that the sum of the diagonals is equal to the perimeter of the parallelogram formed. Also, we can use vectors 1/2 the length of each side to first determine the area of the quadrilateral, and then to find areas of the four triangles divided by each side of the inner parallelogram.

  6. Thébault's theorem - Wikipedia

    en.wikipedia.org/wiki/Thébault's_theorem

    Given any parallelogram, construct on its sides four squares external to the parallelogram. The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem.

  7. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...

  8. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The rhombus has a square as a special case, and is a special case of a kite and parallelogram. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means

  9. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .