enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    One application of higher-order derivatives is in physics. Suppose that a function represents the position of an object at the time. The first derivative of that function is the velocity of an object with respect to time, the second derivative of the function is the acceleration of an object with respect to time, [29] and the third derivative ...

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...

  4. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation (where the vertices represent pixels and the weighted edges encode pixel similarity based on comparisons of Moore neighborhoods or larger windows), data clustering, data classification, or ...

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain ...

  7. Third derivative - Wikipedia

    en.wikipedia.org/wiki/Third_derivative

    In calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function y = f ( x ) {\displaystyle y=f(x)} can be denoted by

  8. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    [22] [23] Differential quadrature is of practical interest because its allows one to compute derivatives from noisy data. The name is in analogy with quadrature , meaning numerical integration , where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule .

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) . {\displaystyle \arctan(y,x).}