Search results
Results from the WOW.Com Content Network
Each of these scales of coordinates results in photon connections of events along diagonal lines of slope plus or minus one. Five elements constitute the diagram Hermann Minkowski used to describe the relativity transformations: the unit hyperbola, its conjugate hyperbola, the axes of the hyperbola, a diameter of the unit hyperbola, and the ...
Parametrization is a mathematical process consisting of expressing the state of a system, process or model as a function of some independent quantities called parameters. The state of the system is generally determined by a finite set of coordinates, and the parametrization thus consists of one function of several real variables for
In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters. [ 1 ] In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not ...
If a planar curve in is defined by the equation = (), where is continuously differentiable, then it is simply a special case of a parametric equation where = and = (). The Euclidean distance of each infinitesimal segment of the arc can be given by:
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.
Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation y = f ( x ) {\displaystyle y=f(x)} in which the functional form is explicitly stated; this is called an explicit representation.
The parametrization is regular for the given values of the parameters if the vectors , are linearly independent. The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r ( u , v ) on the surface determined by the parameters.
where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...