enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    The Helmholtz free energy is defined as [3], where . F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs),; U is the internal energy of the system (SI: joules, CGS: ergs),

  3. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    This equation quickly enables the calculation of the Gibbs free energy change for a chemical reaction at any temperature T 2 with knowledge of just the standard Gibbs free energy change of formation and the standard enthalpy change of formation for the individual components. Also, using the reaction isotherm equation, [8] that is

  4. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    The maximum work is thus regarded as the diminution of the free, or available, energy of the system (Gibbs free energy G at T = constant, P = constant or Helmholtz free energy F at T = constant, V = constant), whilst the heat given out is usually a measure of the diminution of the total energy of the system (internal energy).

  5. Free-energy relationship - Wikipedia

    en.wikipedia.org/wiki/Free-energy_relationship

    The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed] IUPAC has suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. [1]

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  7. Free-energy perturbation - Wikipedia

    en.wikipedia.org/wiki/Free-energy_perturbation

    An alternative to free-energy perturbation for computing potentials of mean force in chemical space is thermodynamic integration. Another alternative, which is probably more efficient, is the Bennett acceptance ratio method. Adaptations to FEP exist which attempt to apportion free-energy changes to subsections of the chemical structure. [5]

  8. Margules activity model - Wikipedia

    en.wikipedia.org/wiki/Margules_activity_model

    The Margules activity model is a simple thermodynamic model for the excess Gibbs free energy of a liquid mixture introduced in 1895 by Max Margules. [1] [2] After Lewis had introduced the concept of the activity coefficient, the model could be used to derive an expression for the activity coefficients of a compound i in a liquid, a measure for the deviation from ideal solubility, also known as ...

  9. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Therefore, only relative free energy values, or changes in free energy, are physically meaningful. The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [1]