Search results
Results from the WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.
If we take water as a reference fluid, = If the surface tension of water is known which is 72 dyne/cm, we can calculate the surface tension of the specific fluid from the equation. The more drops we weigh, the more precisely we can calculate the surface tension from the equation. [3] The stalagmometer must be kept clean for meaningful readings.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
γ is surface tension of the mixture; γ 0 is surface tension of pure water; R is ideal gas constant 8.31 J/(mol*K) T is temperature in K; ω is cross-sectional area of the surfactant molecules at the surface; The surface tension of pure water is dependent on temperature. At room temperature (298 K), it is equal to 71.97 mN/m [4]
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids.
The surface of a fluid is curved because exposed molecules on the surface have fewer neighboring interactions, resulting in a net force that contracts the surface. There exists a pressure difference either side of this curvature, and when this balances out the pressure due to gravity, one can rearrange to find the capillary length.
In fluid dynamics, the Morton number (Mo) is a dimensionless number used together with the Eötvös number or Bond number to characterize the shape of bubbles or drops moving in a surrounding fluid or continuous phase, c. [1] It is named after Rose Morton, who described it with W. L. Haberman in 1953. [2] [3]