enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry .

  3. Pauli–Lubanski pseudovector - Wikipedia

    en.wikipedia.org/wiki/Pauli–Lubanski_pseudovector

    In physics, the Pauli–Lubanski pseudovector is an operator defined from the momentum and angular momentum, used in the quantum-relativistic description of angular momentum. It is named after Wolfgang Pauli and Józef Lubański. [1] It describes the spin states of moving particles. [2]

  4. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  5. Wigner–Eckart theorem - Wikipedia

    en.wikipedia.org/wiki/Wigner–Eckart_theorem

    The Wigner–Eckart theorem is a theorem of representation theory and quantum mechanics.It states that matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is independent of angular momentum orientation, and the other a Clebsch–Gordan coefficient.

  6. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    Angular momentum uncertainty relation: For two orthogonal components of the total angular momentum operator of an object: | |, where i, j, k are distinct, and J i denotes angular momentum along the x i axis. This relation implies that unless all three components vanish together, only a single component of a system's angular momentum can be ...

  7. Clebsch–Gordan coefficients - Wikipedia

    en.wikipedia.org/wiki/Clebsch–Gordan_coefficients

    Examples include the spin and the orbital angular momentum of a single electron, or the spins of two electrons, or the orbital angular momenta of two electrons. Mathematically, this means that the angular momentum operators act on a space V 1 {\displaystyle V_{1}} of dimension 2 j 1 + 1 {\displaystyle 2j_{1}+1} and also on a space V 2 ...

  8. Wigner D-matrix - Wikipedia

    en.wikipedia.org/wiki/Wigner_D-matrix

    Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, [,] =, [,] =, [,] =, where i is the purely imaginary number and the Planck constant ħ has been set equal to one. The Casimir operator

  9. Particle in a spherically symmetric potential - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_spherically...

    In the general time-independent case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form: ^ = ^ + Here, is the mass of the particle, ^ is the momentum operator, and the potential () depends only on the vector magnitude of the position vector, that is, the radial distance from the ...