Search results
Results from the WOW.Com Content Network
The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke characters of number fields. The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke eigenforms.
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.
Riemann's statement of the Riemann hypothesis, from his 1859 paper. [11] (He was discussing a version of the zeta function, modified so that its roots are real rather than on the critical line. See, Riemann Xi Function.)
In mathematics, the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and generalized Riemann hypothesis. It states that the nontrivial zeros of all automorphic L -functions lie on the critical line 1 2 + i t {\displaystyle {\frac {1}{2}}+it} with t {\displaystyle t} a real number variable and i {\displaystyle i} the ...
His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry , Riemann laid the foundations of the mathematics of general relativity . [ 3 ]
The Riemann zeta function is an example of an L-function, and some important conjectures involving L-functions are the Riemann hypothesis and its generalizations. The theory of L -functions has become a very substantial, and still largely conjectural , part of contemporary analytic number theory .
It asks for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes. Absolute value of the ζ-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 [2].
Statements in this class include the statement that P = NP, the Riemann hypothesis, and many other unsolved mathematical problems. When attempting to solve problems in this class, it makes no difference whether ZF or ZFC is employed if the only question is the existence of a proof.