enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stopping time - Wikipedia

    en.wikipedia.org/wiki/Stopping_time

    Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...

  3. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .

  4. List of most-subscribed YouTube channels - Wikipedia

    en.wikipedia.org/wiki/List_of_most-subscribed...

    American YouTube personality MrBeast is the most-subscribed channel on YouTube, with 346 million subscribers as of January 2025.. A subscriber to a channel on the American video-sharing platform YouTube is a user who has chosen to receive the channel's content by clicking on that channel's "Subscribe" button, and each user's subscription feed consists of videos published by channels to which ...

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In a Markov chain, state depends only on the previous state in time, whereas in a Markov random field, each state depends on its neighbors in any of multiple directions. A Markov random field may be visualized as a field or graph of random variables, where the distribution of each random variable depends on the neighboring variables with which ...

  7. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.

  8. Markov renewal process - Wikipedia

    en.wikipedia.org/wiki/Markov_renewal_process

    The process is Markovian only at the specified jump instants, justifying the name semi-Markov. [1] [2] [3] (See also: hidden semi-Markov model.) A semi-Markov process (defined in the above bullet point) in which all the holding times are exponentially distributed is called a continuous-time Markov chain. In other words, if the inter-arrival ...

  9. Time reversibility - Wikipedia

    en.wikipedia.org/wiki/Time_reversibility

    Kolmogorov's criterion defines the condition for a Markov chain or continuous-time Markov chain to be time-reversible. Time reversal of numerous classes of stochastic processes has been studied, including Lévy processes, [3] stochastic networks (Kelly's lemma), [4] birth and death processes, [5] Markov chains, [6] and piecewise deterministic ...