Search results
Results from the WOW.Com Content Network
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry , alcohols and carboxylic acids contain one or more hydroxy groups.
Structure of the hydroxyl (-OH) functional group. The suffix –ol is used in organic chemistry principally to form names of organic compounds containing the hydroxyl (–OH) group, mainly alcohols. The suffix was extracted from the word alcohol. The suffix also appears in some trivial names with reference to oils (from Latin oleum, oil).
In chemistry, hydroxylation refers to the installation of a hydroxyl group (−OH) into an organic compound. Hydroxylations generate alcohols and phenols, which are very common functional groups. Hydroxylation confers some degree of water-solubility. Hydroxylation of a hydrocarbon is an oxidation, thus a step in degradation.
Hydroxyl groups (-OH), found in alcohols, are polar and therefore hydrophilic (water liking) but their carbon chain portion is non-polar which make them hydrophobic. The molecule increasingly becomes overall more nonpolar and therefore less soluble in the polar water as the carbon chain becomes longer. [ 5 ]
The hydroxyl radical, Lewis structure shown, contains one unpaired electron. Lewis dot structure of a Hydroxide ion compared to a hydroxyl radical. In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron.
Ultimately, both reactions generate hydroxyl radicals. These radicals are oxidative in nature and nonselective with a redox potential of E 0 = +3.06 V. [24] This is significantly greater than many common organic compounds, which typically are not greater than E 0 = +2.00 V. [25] This results in the non-selective oxidative behavior of these ...
The hydroxyl radical, • HO, is the neutral form of the hydroxide ion (HO –). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry .
For example, in the cyclic alcohol inositol (a six-fold alcohol of cyclohexane), the six-carbon cyclic backbone largely prevents the hydroxyl and the hydrogen on each carbon from switching places. Therefore, one has different configurational isomers depending on whether each hydroxyl is on "this side" or "the other side" of the ring's mean plane.