Search results
Results from the WOW.Com Content Network
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the electronic switch (S1).
For example, in order to match an inductive load into a real impedance, a capacitor needs to be used. If the load impedance becomes capacitive, the matching element must be replaced by an inductor. In many cases, there is a need to use the same circuit to match a broad range of load impedance and thus simplify the circuit design.
A typical application is a negative impedance converter with voltage inversion (VNIC). [5] It is interesting that the circuit input voltage has the same polarity as the output voltage, although it is applied to the inverting op-amp input; the input source has an opposite polarity to both the circuit input and output voltages.
As well as within a transmitter, I/Q data is also a common means to represent the signal from some receiver. Designs such as the Digital down converter allow the input signal to be represented as streams of IQ data, likely for further processing and symbol extraction in a DSP. Analog systems may suffer from issues, such as IQ imbalance.
The negative impedance converter (NIC) is an active circuit which injects energy into circuits in contrast to an ordinary load that consumes energy from them.This is achieved by adding or subtracting excessive varying voltage in series to the voltage drop across an equivalent positive impedance.
In circuit theory, a hypothetical element that maintains a specified voltage between its terminals independent of the current through it. voltage spike A transient electrical voltage higher than normal appearing on an electrical supply. voltage-to-current converter A circuit that produces an output current proportional to an input voltage. volt ...