Search results
Results from the WOW.Com Content Network
The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]
The correspondence between Riccati equations and second-order linear ODEs has other consequences. For example, if one solution of a 2nd order ODE is known, then it is known that another solution can be obtained by quadrature, i.e., a simple integration. The same holds true for the Riccati equation.
In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...
Examples of include the positive orthant + = {:}, positive semidefinite matrices +, and the second-order cone {(,): ‖ ‖}. Often f {\displaystyle f\ } is a linear function, in which case the conic optimization problem reduces to a linear program , a semidefinite program , and a second order cone program , respectively.
GPOPS-II [3] is designed to solve multiple-phase optimal control problems of the following mathematical form (where is the number of phases): = ((), …, ()) subject to the dynamic constraints
There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.
A second theorem considers local optimizers. [2]: Thm.9.2.2 Let x* be a non-degenerate local optimizer of the original problem ("nondegenerate" means that the gradients of the active constraints are linearly independent and the second-order sufficient optimality condition is satisfied).
In mathematical optimization, the active-set method is an algorithm used to identify the active constraints in a set of inequality constraints. The active constraints are then expressed as equality constraints, thereby transforming an inequality-constrained problem into a simpler equality-constrained subproblem.