enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    Grubbs's test is based on the assumption of normality. That is, one should first verify that the data can be reasonably approximated by a normal distribution before applying the Grubbs test. [2] Grubbs's test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected.

  3. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  4. Cochran's C test - Wikipedia

    en.wikipedia.org/wiki/Cochran's_C_test

    Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.

  5. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  6. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.

  7. Regression diagnostic - Wikipedia

    en.wikipedia.org/wiki/Regression_diagnostic

    Student's t test for testing inclusion of a single explanatory variable, or the F test for testing inclusion of a group of variables, both under the assumption that model errors are homoscedastic and have a normal distribution. Change of model structure between groups of observations. Structural break test. Chow test; Comparing model structures

  8. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  9. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. . The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of locati