Search results
Results from the WOW.Com Content Network
The rope example is an example involving a 'pull' force. The centripetal force can also be supplied as a 'push' force, such as in the case where the normal reaction of a wall supplies the centripetal force for a wall of death or a Rotor rider. Newton's idea of a centripetal force corresponds to what is nowadays referred to as a central force.
Even in calculations requiring high precision, the centrifugal force is generally not explicitly included, but rather lumped in with the gravitational force: the strength and direction of the local "gravity" at any point on the Earth's surface is actually a combination of gravitational and centrifugal forces. However, the fictitious forces can ...
He coined the phrase "compound centrifugal force" for a term which bore a similar mathematical expression to that of centrifugal force, albeit that it was multiplied by a factor of two. [14] The force in question was perpendicular to both the velocity of an object relative to a rotating frame of reference and the axis of rotation of the frame.
The "reactive centrifugal force" discussed in this article is not the same thing as the centrifugal pseudoforce, which is usually what is meant by the term "centrifugal force". Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame.
So also in his model the fine matter presses the rough matter into the center of the vortex. Huygens also found out that the centrifugal force is equal to the force that acts in the direction of the center of the vortex (centripetal force). He also posited that bodies must consist mostly of empty space so that the aether can penetrate the ...
Decanter centrifuges require a centrifugal force for the separation of the solids from the liquid. This characteristic is dependent on the radius of the centrifuge and its angular rotational speed. A decanter centrifuge applies a force equivalent to several thousand G's, which reduces the settling time of the particles.
From the necessary centrifugal force, one can determine one's speed of rotation; for example, if the calculated tension is greater than measured, one is rotating in the sense opposite to the spheres, and the larger the discrepancy the faster this rotation. The tension in the wire is the required centripetal force to sustain the rotation.
The forces that bear on the vehicle in this context are illustrated in the following figure. A vehicle's motion at speed v along a circular path embodies centripetal acceleration of magnitude toward the center of the circle, the curvature of that path being where R is the radius of the circle.