enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]

  3. CPLEX - Wikipedia

    en.wikipedia.org/wiki/CPLEX

    The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).

  4. Conic optimization - Wikipedia

    en.wikipedia.org/wiki/Conic_optimization

    Examples of include the positive orthant + = {:}, positive semidefinite matrices +, and the second-order cone {(,): ‖ ‖}. Often f {\displaystyle f\ } is a linear function, in which case the conic optimization problem reduces to a linear program , a semidefinite program , and a second order cone program , respectively.

  5. MOSEK - Wikipedia

    en.wikipedia.org/wiki/MOSEK

    The applicability of the solver varies widely and is commonly used for solving problems in areas such as engineering, finance and computer science. The emphasis in MOSEK is on solving large-scale sparse problems, in particular the interior-point optimizer for linear, conic quadratic (a.k.a. Second-order cone programming) and semi-definite (aka.

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Such a constraint set is called a polyhedron or a polytope if it is bounded. Second-order cone programming (SOCP) is a convex program, and includes certain types of quadratic programs. Semidefinite programming (SDP) is a subfield of convex optimization where the underlying variables are semidefinite matrices. It is a generalization of linear ...

  7. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...

  1. Related searches second order cone constraint in database development is called a computer

    second order cone program2nd order cone formula
    2nd order cone definition2nd order cone graph
    socp 2nd order cone2nd order convection