Search results
Results from the WOW.Com Content Network
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.
Instantaneous-dipole induced-dipole attraction. Add languages. ... Download as PDF; Printable version; ... Redirect to: London dispersion force;
In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds , these attractions do not result from a chemical electronic bond ; [ 2 ] they are comparatively weak and therefore more susceptible to disturbance.
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
Debye forces, or dipole–induced dipole interactions, can also play a role in dispersive adhesion. These come about when a nonpolar molecule becomes temporarily polarized due to interaction with a nearby polar molecule. This "induced dipole" in the nonpolar molecule then is attracted to the permanent dipole, yielding a Debye attraction.
A dipole-induced dipole interaction (Debye force) is due to the approach of a molecule with a permanent dipole to another non-polar molecule with no permanent dipole. This approach causes the electrons of the non-polar molecule to be polarized toward or away from the dipole (or "induce" a dipole) of the approaching molecule. [13]
A similar parameter exists to relate the magnitude of the induced dipole moment p of an individual molecule to the local electric field E that induced the dipole. This parameter is the molecular polarizability ( α ), and the dipole moment resulting from the local electric field E local is given by: p = ε 0 α E local {\displaystyle \mathbf {p ...