enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helium-4 - Wikipedia

    en.wikipedia.org/wiki/Helium-4

    Helium-4 makes up about one quarter of the ordinary matter in the universe by mass, with almost all of the rest being hydrogen. While nuclear fusion in stars also produces helium-4, most of the helium-4 in the Sun and in the universe is thought to have been produced during the Big Bang, known as "primordial helium". However, primordial helium-4 ...

  3. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    The theory of BBN gives a detailed mathematical description of the production of the light "elements" deuterium, helium-3, helium-4, and lithium-7. Specifically, the theory yields precise quantitative predictions for the mixture of these elements, that is, the primordial abundances at the end of the big-bang.

  4. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.

  5. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    The goal of the theory of nucleosynthesis is to explain the vastly differing abundances of the chemical elements and their several isotopes from the perspective of natural processes. The primary stimulus to the development of this theory was the shape of a plot of the abundances versus the atomic number of the elements.

  6. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The binding energy of helium is the energy source of the Sun and of most stars. [12] The sun is composed of 74 percent hydrogen (measured by mass), an element having a nucleus consisting of a single proton. Energy is released in the Sun when 4 protons combine into a helium nucleus, a process in which two of them are also converted to neutrons. [11]

  7. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    the total rest mass on the two helium-nuclei = 2 × 4.0026 = 8.0052 u; missing rest mass = 8.029 – 8.0052 = 0.0238 atomic mass units. In a nuclear reaction, the total (relativistic) energy is conserved. The "missing" rest mass must therefore reappear as kinetic energy released in the reaction; its source is the nuclear binding energy.

  8. Helium - Wikipedia

    en.wikipedia.org/wiki/Helium

    The unusual stability of the helium-4 nucleus is also important cosmologically: it explains the fact that in the first few minutes after the Big Bang, as the "soup" of free protons and neutrons which had initially been created in about 6:1 ratio cooled to the point that nuclear binding was possible, almost all first compound atomic nuclei to ...

  9. Nuclear structure - Wikipedia

    en.wikipedia.org/wiki/Nuclear_structure

    The most common extension to mean field theory is the nuclear pairing. Nuclei with an even number of nucleons are systematically more bound than those with an odd one. This implies that each nucleon binds with another one to form a pair, consequently the system cannot be described as independent particles subjected to a common mean field.