Search results
Results from the WOW.Com Content Network
These organisms perform photosynthesis through organelles called chloroplasts and are believed to have originated about 2 billion years ago. [1] Comparing the genes of chloroplast and cyanobacteria strongly suggests that chloroplasts evolved as a result of endosymbiosis with cyanobacteria that gradually lost the genes required to be free-living.
2 S, as in some green sulfur bacteria) they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
The primary producers can convert the energy in the light (phototroph and photoautotroph) or the energy in inorganic chemical compounds (chemotrophs or chemolithotrophs) to build organic molecules, which is usually accumulated in the form of biomass and will be used as carbon and energy source by other organisms (e.g. heterotrophs and mixotrophs).
Chemical structures comparing porphin, chlorin, bacteriochlorin, and isobacteriochlorin.Note relocation of C=C double bond between the two bacteriochlorin isomers.There are two π electrons (symbolized by π e −) for every double bond in the macrocycle.
The surface of the flagellum is coated with about 30,000 extremely fine filaments called mastigonemes. [18] Like other euglenoids, Euglena possess a red eyespot, an organelle composed of carotenoid pigment granules. The red spot itself is not thought to be photosensitive. Rather, it filters the sunlight that falls on a light-detecting structure ...
Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis.It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. [3]
Micrasterias is a unicellular green alga of the order Desmidiales.Its species vary in size reaching up to hundreds of microns. Micrasterias displays a bilateral symmetry, with two mirror image semi-cells joined by a narrow isthmus containing the nucleus of the organism.