Search results
Results from the WOW.Com Content Network
Amylolytic process or amylolysis is the conversion of starch into sugar by the action of acids or enzymes such as amylase. [1]Starch begins to pile up inside the leaves of plants during times of light when starch is able to be produced by photosynthetic processes.
Another form of amylase, β-amylase (EC 3.2.1.2 ) (alternative names: 1,4-α-D-glucan maltohydrolase; glycogenase; saccharogen amylase) is also synthesized by bacteria, fungi, and plants. Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a
Gibberellins in the seed embryo are believed to signal starch hydrolysis through inducing the synthesis of the enzyme α-amylase in the aleurone cells. In the model for gibberellin-induced production of α-amylase, it is demonstrated that gibberellins from the scutellum diffuse to the aleurone cells, where they stimulate the secretion α-amylase.
β-Amylase (EC 3.2.1.2, saccharogen amylase, glycogenase) is an enzyme with the systematic name 4-α-D-glucan maltohydrolase. [ 2 ] [ 3 ] [ 4 ] It catalyses the following reaction: Hydrolysis of (1→4)-α- D -glucosidic linkages in polysaccharides so as to remove successive maltose units from the non-reducing ends of the chains
Glucan 1,4-alpha-maltohydrolase (EC 3.2.1.133, maltogenic alpha-amylase, 1,4-alpha-D-glucan alpha-maltohydrolase) is an enzyme with systematic name 4-alpha-D-glucan alpha-maltohydrolase. [ 1 ] [ 2 ] This enzyme catalyses the following chemical reaction
α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]
This strong market position generates substantial cash flows that support shareholder returns. Turning to the specifics, the pharmaceutical giant offers investors a 4.3% dividend yield backed by a ...
β-amylase catalyses the hydrolysis of starch into maltose by the process of removing successive maltose units from the non-reducing ends of the chains. γ-Amylase will cleave the last α(1–4)glycosidic linkages at the nonreducing end of amylose and amylopectin , yielding glucose.