Search results
Results from the WOW.Com Content Network
Flowchart showing baroreceptor reflex. The baroreflex or baroreceptor reflex is one of the body's homeostatic mechanisms that helps to maintain blood pressure at nearly constant levels. The baroreflex provides a rapid negative feedback loop in which an elevated blood pressure causes the heart rate to decrease. Decreased blood pressure decreases ...
Baroreceptors respond very quickly to maintain a stable blood pressure, but their responses diminish with time and thus are most effective for conveying short term changes in blood pressure. In people with essential hypertension the baroreceptors and their reflexes change and function to maintain the elevated blood pressure as if normal. The ...
Low pressure baroreceptors are primarily involved in the regulation of the blood volume. Low pressure baroreceptors have both circulatory and renal effects, which produce changes in hormone secretion. Stimulation of these receptors causes the atria to release atrial natriuretic peptide. This hormone acts on the kidneys to increase sodium ...
The carotid sinus baroreceptor can be oversensitive to manual stimulation from the pressure applied at the carotid sinus at the carotid bifurcation. It is a condition known as 'carotid sinus hypersensitivity' (CSH), 'carotid sinus syndrome' or 'carotid sinus syncope', in which manual stimulation causes large changes in heart rate and blood ...
Baroreflex or baroreceptor reflex — homeostatic countereffect to a sudden elevation or reduction in blood pressure detected by the baroreceptors in the aortic arch, carotid sinuses, etc. Bezold-Jarisch reflex — involves a variety of cardiovascular and neurological processes which cause hypopnea and bradycardia.
Cardiac physiology or heart function is the study of healthy, ... a mechanism called the baroreceptor reflex. With increased pressure and stretch, the rate of ...
Reflex bradycardia is a bradycardia (decrease in heart rate) in response to the baroreceptor reflex, one of the body's homeostatic mechanisms for preventing abnormal increases in blood pressure. In the presence of high mean arterial pressure , the baroreceptor reflex produces a reflex bradycardia as a method of decreasing blood pressure by ...
These baroreceptors send signals ultimately to the medulla of the brain stem, specifically to the rostral ventrolateral medulla (RVLM). The medulla, by way of the autonomic nervous system , adjusts the mean arterial pressure by altering both the force and speed of the heart's contractions, as well as the systemic vascular resistance.