enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)

  3. Reaction quotient - Wikipedia

    en.wikipedia.org/wiki/Reaction_quotient

    In chemical thermodynamics, the reaction quotient (Q r or just Q) [1] is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry at a particular point in time.

  4. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    Here Q and W are heat and work added, with no restrictions as to whether the process is reversible, quasistatic, or irreversible.[Warner, Am. J. Phys., 29, 124 (1961)] [34] This statement by Crawford, for W, uses the sign convention of IUPAC, not that of Clausius. Though it does not explicitly say so, this statement refers to closed systems.

  5. Isobaric process - Wikipedia

    en.wikipedia.org/wiki/Isobaric_process

    where W is work, U is internal energy, and Q is heat. [1] Pressure-volume work by the closed system is defined as: = where Δ means change over the whole process, whereas d denotes a differential. Since pressure is constant, this means that =. Applying the ideal gas law, this becomes

  6. Standard enthalpy of reaction - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_reaction

    From the first law of thermodynamics, =, where W is the work done by the system. When only expansion work is possible for a process we have Δ U = Q V {\displaystyle \Delta U=Q_{V}} ; this implies that the heat of reaction at constant volume is equal to the change in the internal energy Δ U {\displaystyle \Delta U} of the reacting system.

  7. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The symbol Q for heat was introduced by Rudolf Clausius and Macquorn Rankine in c. 1859. [4] Heat released by a system into its surroundings is by convention, as a contributor to internal energy, a negative quantity (Q < 0); when a system absorbs heat from its surroundings, it is positive (Q > 0).

  8. Glossary of chemistry terms - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_chemistry_terms

    Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...

  9. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to