Search results
Results from the WOW.Com Content Network
The phrase "drug design" is similar to ligand design (i.e., design of a molecule that will bind tightly to its target). [6] Although design techniques for prediction of binding affinity are reasonably successful, there are many other properties, such as bioavailability, metabolic half-life, and side effects, that first must be optimized before a ligand can become a safe and effictive drug.
Another method for drug discovery is de novo drug design, in which a prediction is made of the sorts of chemicals that might (e.g.) fit into an active site of the target enzyme. For example, virtual screening and computer-aided drug design are often used to identify new chemical moieties that may interact with a target protein.
The objective of this drug discovery phase is to synthesize lead compounds, new analogs with improved potency, reduced off-target activities, and physiochemical/metabolic properties suggestive of reasonable in vivo pharmacokinetics [7] [8].
This approach is known as "reverse pharmacology" or "target based drug discovery" (TDD). [5] However recent statistical analysis reveals that a disproportionate number of first-in-class drugs with novel mechanisms of action come from phenotypic screening [ 6 ] which has led to a resurgence of interest in this method.
Forward and reverse pharmacology approaches in drug discovery. In the field of drug discovery, reverse pharmacology [1] [2] [3] also known as target-based drug discovery (TDD), [4] a hypothesis is first made that modulation of the activity of a specific protein target thought to be disease modifying will have beneficial therapeutic effects.
Figure 1. Flow Chart of Virtual Screening [1]. Virtual screening (VS) is a computational technique used in drug discovery to search libraries of small molecules in order to identify those structures which are most likely to bind to a drug target, typically a protein receptor or enzyme.
They come from testing for no mean difference, thus are not designed to measure the size of small molecule or siRNA effects. For hit selection, the major interest is the size of effect in a tested small molecule or siRNA. SSMD directly assesses the size of effects. [17] SSMD has also been shown to be better than other commonly used effect sizes ...
The term "biological target" is frequently used in pharmaceutical research to describe the native protein in the body whose activity is modified by a drug resulting in a specific effect, which may be a desirable therapeutic effect or an unwanted adverse effect. In this context, the biological target is often referred to as a drug target.