Search results
Results from the WOW.Com Content Network
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
Regular polyhedra are the most highly symmetrical. Altogether there are nine regular polyhedra: five convex and four star polyhedra. The five convex examples have been known since antiquity and are called the Platonic solids. These are the triangular pyramid or tetrahedron, cube, octahedron, dodecahedron and icosahedron:
Its (two-dimensional) faces are regular p-gons ({p}), the cells are regular polyhedra of type {p,q}, the vertex figures are regular polyhedra of type {q,r}, and the edge figures are regular r-gons (type {r}). See the six convex regular and 10 regular star 4-polytopes. For example, the 120-cell is represented by {5,3,3}.
The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.
However, Eberhard's theorem states that it should be possible to form a simple polyhedron by adding some number of hexagons, and in this case one hexagon suffices: bisecting a cube on a regular hexagon passing through six of its faces produces two copies of a simple roofless polyhedron with three triangle faces, three pentagon faces, and one ...
This is a fundamental result in rigidity theory: one consequence of the theorem is that, if one makes a physical model of a convex polyhedron by connecting together rigid plates for each of the polyhedron faces with flexible hinges along the polyhedron edges, then this ensemble of plates and hinges will necessarily form a rigid structure.
The convex uniform polyhedra can be named by Wythoff construction operations on the regular form. In more detail the convex uniform polyhedron are given below by their Wythoff construction within each symmetry group. Within the Wythoff construction, there are repetitions created by lower symmetry forms. The cube is a regular polyhedron, and a ...