Search results
Results from the WOW.Com Content Network
The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins).
This histogram provides an estimate of the shape of the distribution of the sample mean from which we can answer questions about how much the mean varies across samples. (The method here, described for the mean, can be applied to almost any other statistic or estimator .)
The left histogram appears to indicate that the upper half has a higher density than the lower half, whereas the reverse is the case for the right-hand histogram, confirming that histograms are highly sensitive to the placement of the anchor point. [6] Comparison of 2D histograms. Left. Histogram with anchor point at (−1.5, -1.5). Right.
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Centered on each sample, a Gaussian kernel is drawn in gray. Averaging the Gaussians yields the density estimate shown in the dashed black curve. In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The ...
The histogram is itself a maximum-likelihood (ML) estimate of the discretized frequency distribution [citation needed]), where is the width of the th bin. Histograms can be quick to calculate, and simple, so this approach has some attraction.
In order to estimate the mode of the underlying distribution, the usual practice is to discretize the data by assigning frequency values to intervals of equal distance, as for making a histogram, effectively replacing the values by the midpoints of the intervals they are assigned to. The mode is then the value where the histogram reaches its peak.