Search results
Results from the WOW.Com Content Network
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem. Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple ...
In Integration by substitution, the limits of integration will change due to the new function being integrated. With the function that is being derived, a {\displaystyle a} and b {\displaystyle b} are solved for f ( u ) {\displaystyle f(u)} .
In single-variable calculus, operations like differentiation and integration are made to functions of a single variable. In multivariate calculus, it is required to generalize these to multiple variables, and the domain is therefore multi-dimensional. Care is therefore required in these generalizations, because of two key differences between 1D ...
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
A substitution is called a ground substitution if it maps all variables of its domain to ground, i.e. variable-free, terms. The substitution instance tσ of a ground substitution is a ground term if all of t ' s variables are in σ ' s domain, i.e. if vars(t) ⊆ dom(σ).
In the lambda calculus, x is a bound variable in the term M = λx. T and a free variable in the term T. We say x is bound in M and free in T. If T contains a subterm λx. U then x is rebound in this term. This nested, inner binding of x is said to "shadow" the outer binding. Occurrences of x in U are free occurrences of the new x. [3]