Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
The only subset of the empty set is the empty set itself; equivalently, the power set of the empty set is the set containing only the empty set. The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A
The 2x2 matrices show the same information like the Venn diagrams. (This matrix is similar to this Hasse diagram.) In set theory the Venn diagrams represent the set, which is marked in red. These 15 relations, except the empty one, are minterms and can be the case. The relations in the files below are disjunctions.
The empty set is a subset of every set (the statement that all elements of the empty set are also members of any set A is vacuously true). The set of all subsets of a given set A is called the power set of A and is denoted by 2 A {\displaystyle 2^{A}} or P ( A ) {\displaystyle P(A)} ; the " P " is sometimes in a script font: ℘ ( A ...
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
The empty set is also occasionally called the null set, [11] though this name is ambiguous and can lead to several interpretations. The power set of a set A, denoted (), is the set whose members are all of the possible subsets of A. For example, the power set of {1, 2} is { {}, {1}, {2}, {1, 2} }. Notably, () contains both A and the empty set.
Venn diagram: Venn diagram: all possible logical relations between a finite collection of different sets. Shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane, and sets as regions inside closed curves.
A "*" follows the algebra of sets interpretation of Huntington's (1904) classic postulate set for Boolean algebra. These properties can be visualized with Venn diagrams. They also follow from the fact that P(U) is a Boolean lattice. The properties followed by "L" interpret the lattice axioms.