Search results
Results from the WOW.Com Content Network
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. [1] This is in contrast to binary operations , which use two operands. [ 2 ] An example is any function f : A → A {\displaystyle f:A\rightarrow A} , where A is a set ; the function f {\displaystyle f} is a unary operation on A .
In languages syntactically derived from B (including C and its various derivatives), the increment operator is written as ++ and the decrement operator is written as --. Several other languages use inc(x) and dec(x) functions. The increment operator increases, and the decrement operator decreases, the value of its operand by 1.
The successor function, denoted , is a unary operator.Its domain and codomain are the natural numbers; its definition is as follows: : (+) In some programming languages such as C, executing this operation is denoted by postfixing ++ to the operand, i.e. the use of n++ is equivalent to executing the assignment := ().
Most programming languages support binary operators and a few unary operators, with a few supporting more operands, such as the ?: operator in C, which is ternary. There are prefix unary operators, such as unary minus -x, and postfix unary operators, such as post-increment x++; and binary operations are infix, such as x + y or x = y.
Examples of unary operators in mathematics and in programming include the unary minus and plus, the increment and decrement operators in C-style languages (not in logical languages), and the successor, factorial, reciprocal, floor, ceiling, fractional part, sign, absolute value, square root (the principal square root), complex conjugate (unary ...
*/ /* This implementation does not implement composite functions, functions with a variable number of arguments, or unary operators. */ while there are tokens to be read: read a token if the token is: - a number: put it into the output queue - a function: push it onto the operator stack - an operator o 1: while ( there is an operator o 2 at the ...
Boolean logic allows 2 2 = 4 unary operators; the addition of a third value in ternary logic leads to a total of 3 3 = 27 distinct operators on a single input value. (This may be made clear by considering all possible truth tables for an arbitrary unary operator.
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction.