enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain. [ 1 ] Originating from operations research in the 1950s, [ 2 ] [ 3 ] MDPs have since gained recognition in a variety of fields, including ecology , economics , healthcare ...

  3. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [86] Herbert A. Simon and co-author Charles Bonini used a Markov chain model to derive a stationary Yule distribution of firm sizes. [87] Louis Bachelier was the first to observe that stock prices followed a random walk. [88]

  5. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model. A discrete ...

  6. Partially observable Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Partially_observable...

    A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a sensor model (the probability distribution of different observations given the underlying state) and the underlying MDP. Unlike the policy ...

  7. Stochastic game - Wikipedia

    en.wikipedia.org/wiki/Stochastic_game

    The ingredients of a stochastic game are: a finite set of players ; a state space (either a finite set or a measurable space (,)); for each player , an action set (either a finite set or a measurable space (,)); a transition probability from , where = is the action profiles, to , where (,) is the probability that the next state is in given the current state and the current action profile ; and ...

  8. Category:Markov processes - Wikipedia

    en.wikipedia.org/wiki/Category:Markov_processes

    This category is for articles about the theory of Markov chains and processes, and associated processes. See Category:Markov models for models for specific applications that make use of Markov processes.

  9. Markov reward model - Wikipedia

    en.wikipedia.org/wiki/Markov_reward_model

    In probability theory, a Markov reward model or Markov reward process is a stochastic process which extends either a Markov chain or continuous-time Markov chain by adding a reward rate to each state. An additional variable records the reward accumulated up to the current time. [1]