Search results
Results from the WOW.Com Content Network
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
Commonly, a decimal SI metric prefix (such as kilo-) is used with bit and byte to express larger sizes (kilobit, kilobyte). But, this is usually inaccurate since these prefixes are decimal, whereas binary hardware size is usually binary. Customarily, each metric prefix, 1000 n, is used to mean a close approximation of a binary multiple, 1024 n ...
A bidirectional variant of selection sort (called double selection sort or sometimes cocktail sort due to its similarity to cocktail shaker sort) finds both the minimum and maximum values in the list in every pass. This requires three comparisons per two items (a pair of elements is compared, then the greater is compared to the maximum and the ...
Radix sort is an algorithm that sorts numbers by processing individual digits. n numbers consisting of k digits each are sorted in O(n · k) time. Radix sort can process digits of each number either starting from the least significant digit (LSD) or starting from the most significant digit (MSD). The LSD algorithm first sorts the list by the ...
In computer science, radix sort is a non-comparative sorting algorithm.It avoids comparison by creating and distributing elements into buckets according to their radix.For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered.
In applications such as in radix sort, a bound on the maximum key value k will be known in advance, and can be assumed to be part of the input to the algorithm. However, if the value of k is not already known then it may be computed, as a first step, by an additional loop over the data to determine the maximum key value.