Search results
Results from the WOW.Com Content Network
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.
1 ideal exhaust velocity. 22 comments. 2 Merged with other articles. 3 comments. 3 Quite a long sentence. 2 comments. 4 ...
A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat).
It depends on many factors, though on average they cost anywhere between $1,400 - $2,000 or more. These birds love to climb, chew, and play. They're also very vocal and naturally produce loud ...
Retail reading. The final monthly retail sales report before the start of the holiday shopping season is set for release on Thursday. Economists estimate retail sales increased 0.3% over the prior ...
Due to various losses in real engines, the actual exhaust velocity is different from the I sp "velocity" (and for cars there isn't even a sensible definition of "actual exhaust velocity"). Rather, the specific impulse is just that: a physical momentum from a physical quantity of propellant (be that in mass or weight).