Search results
Results from the WOW.Com Content Network
In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the ...
As such, for two objects and having descriptors, the similarity is defined as: = = =, where the are non-negative weights and is the similarity between the two objects regarding their -th variable. In spectral clustering , a similarity, or affinity, measure is used to transform data to overcome difficulties related to lack of convexity in the ...
A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5 A common example of a vector-valued function is one that depends on a single real parameter t , often representing time , producing a vector v ( t ) as the result.
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
x = Re z is the real part, y = Im z is the imaginary part, r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π.
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Thus, a ⋅ b = | a | | b | cos θ {\displaystyle \mathbf {a} \cdot \mathbf {b} =|\mathbf {a} |\,|\mathbf {b} |\cos \theta } Alternatively, it is defined as the product of the projection of ...