Search results
Results from the WOW.Com Content Network
An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.
Pages in category "Statistical ratios" The following 70 pages are in this category, out of 70 total. ... Statistics; Cookie statement; Mobile view ...
The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals. The bias is of the order O(1/n) (see big O notation) so as the sample size (n) increases, the bias will asymptotically approach 0. Therefore, the estimator is approximately unbiased for large sample sizes.
In geology, a rock composed of different minerals may be a compositional data point in a sample of rocks; a rock of which 10% is the first mineral, 30% is the second, and the remaining 60% is the third would correspond to the triple [0.1, 0.3, 0.6]. A data set would contain one such triple for each rock in a sample of rocks.
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.
The ratio of width to height of standard-definition television. In mathematics, a ratio (/ ˈ r eɪ ʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3).
In the ratio of Poisson variables R = X/Y there is a problem that Y is zero with finite probability so R is undefined. To counter this, consider the truncated, or censored, ratio R' = X/Y' where zero sample of Y are discounted. Moreover, in many medical-type surveys, there are systematic problems with the reliability of the zero samples of both ...