enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    The number of k-combinations for all k is the number of subsets of a set of n elements. There are several ways to see that this number is 2 n . In terms of combinations, ∑ 0 ≤ k ≤ n ( n k ) = 2 n {\textstyle \sum _{0\leq {k}\leq {n}}{\binom {n}{k}}=2^{n}} , which is the sum of the n th row (counting from 0) of the binomial coefficients in ...

  3. Lottery mathematics - Wikipedia

    en.wikipedia.org/wiki/Lottery_mathematics

    One must divide the number of combinations producing the given result by the total number of possible combinations (for example, () =,,).The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers.

  4. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    Finding the number N, using the formula above, from the k-combination (c k, ..., c 2, c 1) is also known as "ranking", and the opposite operation (given by the greedy algorithm) as "unranking"; the operations are known by these names in most computer algebra systems, and in computational mathematics. [2] [3]

  5. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    The three-choose-two combination yields two results, depending on whether a bin is allowed to have zero items. In both results the number of bins is 3. If zero is not allowed, the number of cookies should be n = 6, as described in the previous figure. If zero is allowed, the number of cookies should only be n = 3.

  6. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    The number of derangements of a set of size n is known as the subfactorial of n or the n th derangement number or n th de Montmort number (after Pierre Remond de Montmort). Notations for subfactorials in common use include !n, D n, d n, or n¡ . [a] [1] [2] For n > 0 , the subfactorial !n equals the nearest integer to n!/e, where n!

  7. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)

  8. All 49 possible Super Bowl matchups, ranked - AOL

    www.aol.com/sports/49-possible-super-bowl-match...

    The playoff fields are set, and with seven teams from each conference advancing, that means there are 49 possible combinations for Super Bowl LIX.Some are atrocious and unthinkable, some are ...

  9. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green). Multiple points on a line imply multiple possible combinations (blue). Only lines with n = 1 or 3 have no points (red).