enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schumann resonances - Wikipedia

    en.wikipedia.org/wiki/Schumann_resonances

    The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.

  3. Extremely low frequency - Wikipedia

    en.wikipedia.org/wiki/Extremely_low_frequency

    The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...

  4. Resonance fluorescence - Wikipedia

    en.wikipedia.org/wiki/Resonance_fluorescence

    Resonance fluorescence is used primarily in the coherent control of atoms. By coupling a two-level atom, such as a quantum dot, to an electric field in the form of a laser, you are able to effectively create a qubit. The qubit states correspond to the excited and the ground state of the two-level atoms.

  5. Winfried Otto Schumann - Wikipedia

    en.wikipedia.org/wiki/Winfried_Otto_Schumann

    Winfried Otto Schumann (May 20, 1888 – September 22, 1974) was a German physicist and electrical engineer who predicted the Schumann resonances, a series of low-frequency resonances caused by lightning discharges in the atmosphere.

  6. Ramsey interferometry - Wikipedia

    en.wikipedia.org/wiki/Ramsey_interferometry

    A simplified version of the Rabi method consists of a beam of atoms, all having the same speed and the same direction, sent through one interaction zone of length .The atoms are two-level atoms with a transition energy of (this is defined by applying a field ‖ in an excitation direction ^, and thus = | ‖ |, the Larmor frequency), and with an interaction time of = / in the interaction zone.

  7. Absorption band - Wikipedia

    en.wikipedia.org/wiki/Absorption_band

    Absorptions bands in the Earth's atmosphere created by greenhouse gases and the resulting effects on transmitted radiation.. In spectroscopy, an absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum that are characteristic of a particular transition from initial to final state in a substance.

  8. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  9. Two-photon absorption - Wikipedia

    en.wikipedia.org/wiki/Two-photon_absorption

    Schematic of energy levels involved in two photons absorption. In atomic physics, two-photon absorption (TPA or 2PA), also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite an atom or a molecule from one state (usually the ground state), via a virtual energy level, to a higher energy ...

  1. Related searches schumann resonance signals are produced by two atoms created by single membrane

    schumann resonances diagramschumann resonance effects
    schumann resonance wikipediaschumann frequencies
    schumann resonance physics