Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.
The equation of motion for a particle of constant mass m is Newton's second law of 1687, in modern vector notation =, where a is its acceleration and F the resultant force acting on it. Where the mass is varying, the equation needs to be generalised to take the time derivative of the momentum.
The Euler momentum equation is an expression of Newton's second law adapted to fluid dynamics. [63] [64] A fluid is described by a velocity field, i.e., a function (,) that assigns a velocity vector to each point in space and time. A small object being carried along by the fluid flow can change velocity for two reasons: first, because the ...
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
To find an acceleration, consider the forces affecting each individual mass. Using Newton's second law (with a sign convention of >) derive a system of equations for the acceleration (a). As a sign convention, assume that a is positive when downward for and upward for .
By Newton's second law, the cause of acceleration is a net force acting on the object, which is proportional to its mass m and its acceleration. The force, usually referred to as a centripetal force , has a magnitude [ 7 ] F c = m a c = m v 2 r {\displaystyle F_{c}=ma_{c}=m{\frac {v^{2}}{r}}} and is, like centripetal acceleration, directed ...
Euler also worked out analogous laws of motion to those of Newton, see Euler's laws of motion. These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is: [10]