Search results
Results from the WOW.Com Content Network
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
Define the Hadamard canonical factors ():= = / Entire functions of finite order have Hadamard's canonical representation: [1] = = (/) where are those roots of that are not zero (), is the order of the zero of at = (the case = being taken to mean ()), a polynomial (whose degree we shall call ), and is the smallest non-negative integer such that the series = | | + converges.
The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...
The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.
Such functions are sometimes called self-conjugate (the conjugate function, (), being given by ¯ (¯)). [ 1 ] If the real part of an entire function is known in a neighborhood of a point then both the real and imaginary parts are known for the whole complex plane, up to an imaginary constant.
More generally, direction cosine refers to the cosine of the angle between any two vectors. They are useful for forming direction cosine matrices that express one set of orthonormal basis vectors in terms of another set, or for expressing a known vector in a different basis. Simply put, direction cosines provide an easy method of representing ...