enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. McKay's approximation for the coefficient of variation

    en.wikipedia.org/wiki/McKay's_approximation_for...

    In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay. [1] Statistical methods for the coefficient of variation often utilizes McKay's approximation. [2] [3] [4] [5]

  3. Coefficient of variation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_variation

    The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18

  4. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group.

  5. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Mathematically, ANCOVA decomposes the variance in the DV into variance explained by the CV(s), variance explained by the categorical IV, and residual variance. Intuitively, ANCOVA can be thought of as 'adjusting' the DV by the group means of the CV(s). [1] The ANCOVA model assumes a linear relationship between the response (DV) and covariate (CV):

  6. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Heteroscedasticity does not cause ordinary least squares coefficient estimates to be biased, although it can cause ordinary least squares estimates of the variance (and, thus, standard errors) of the coefficients to be biased, possibly above or below the true of population variance. Thus, regression analysis using heteroscedastic data will ...

  7. Commonality analysis - Wikipedia

    en.wikipedia.org/wiki/Commonality_analysis

    Commonality analysis is a statistical technique within multiple linear regression that decomposes a model's R 2 statistic (i.e., explained variance) by all independent variables on a dependent variable in a multiple linear regression model into commonality coefficients.

  8. Statistical Methods for Research Workers - Wikipedia

    en.wikipedia.org/wiki/Statistical_Methods_for...

    Tests of Significance of Means, Difference of Means, and Regression Coefficients; The Correlation Coefficient; Intraclass Correlations and the Analysis of Variance; Further Applications of the Analysis of Variance; SOURCES USED FOR DATA AND METHODS INDEX; In the second edition of 1928 a chapter 9 was added: The Principles of Statistical Estimation.

  9. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).