enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero.

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The convergence of a geometric series can be described depending on the value of a common ratio, see § Convergence of the series and its proof. Grandi's series is an example of a divergent series that can be expressed as + +, where the initial term is and the common ratio is ; this is because it has three different values.

  4. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals, and g is a non-negative monotonically decreasing function, then the integral of fg is a convergent improper integral.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  6. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b. Any series that is not convergent is said to be divergent or to diverge.

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times will yield a series of all zeros that converges to zero. However, for any two series where one converges and the other diverges, the result of their addition diverges.

  8. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  9. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.