Search results
Results from the WOW.Com Content Network
# set terminal svg enhanced size 875 1250 fname "Times" fsize 25 set terminal postscript enhanced portrait dashed lw 1 "Helvetica" 14 set output "bode.ps" # ugly part of something G(w,n) = 0 * w * n + 100000 # 1 / (sqrt(1 + w**(2*n))) dB(x) = 0 + x + 100000 # 20 * log10(abs(x)) P(w) = w * 0 + 200 # -atan(w)*180/pi # Gridlines set grid # Set x axis to logarithmic scale set logscale x 10 set ...
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
The voltage magnitude is also assumed to be 1 p.u. at the slack bus. The slack bus provides or absorbs active and reactive power to and from the transmission line to provide for losses, since these variables are unknown until the final solution is established. The slack bus is the only bus for which the system reference phase angle is defined ...
Lissajous curves can also be generated using an oscilloscope (as illustrated). An octopus circuit can be used to demonstrate the waveform images on an oscilloscope. Two phase-shifted sinusoid inputs are applied to the oscilloscope in X-Y mode and the phase relationship between the signals is presented as a Lissajous figure.
A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).