Search results
Results from the WOW.Com Content Network
In modern times, geometric concepts have been generalized to a high level of abstraction and complexity, and have been subjected to the methods of calculus and abstract algebra, so that many modern branches of the field are barely recognizable as the descendants of early geometry. (See Areas of mathematics and Algebraic geometry.)
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
1854 – Arthur Cayley shows that quaternions can be used to represent rotations in four-dimensional space, 1858 – August Ferdinand Möbius invents the Möbius strip, 1870 – Felix Klein constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2] These axioms were also modified by the School Mathematics Study Group to provide a new standard for teaching high school geometry, known as SMSG axioms. A few other textbooks in the foundations of geometry use variants of Birkhoff's axioms. [3]
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Geometry is one of the oldest mathematical sciences.
In the 1960s a new set of axioms for Euclidean geometry, suitable for American high school geometry courses, was introduced by the School Mathematics Study Group (SMSG), as a part of the New math curricula. This set of axioms follows the Birkhoff model of using the real numbers to gain quick entry into the geometric fundamentals.
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...