Search results
Results from the WOW.Com Content Network
On-line textbook: Information Theory, Inference, and Learning Algorithms, by David MacKay - gives an entertaining and thorough introduction to Shannon theory, including two proofs of the noisy-channel coding theorem. This text also discusses state-of-the-art methods from coding theory, such as low-density parity-check codes, and Turbo codes.
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel , and a receiver.
Common values of b are 2, Euler's number e, and 10, and the unit of entropy is shannon (or bit) for b = 2, nat for b = e, and hartley for b = 10. [ 1 ] Mathematically H may also be seen as an average information, taken over the message space, because when a certain message occurs with probability p i , the information quantity −log( p i ...
Information theory, developed by Claude E. Shannon in 1948, defines the notion of channel capacity and provides a mathematical model by which it may be computed. The key result states that the capacity of the channel, as defined above, is given by the maximum of the mutual information between the input and output of the channel, where the ...
The choice of logarithmic base in the following formulae determines the unit of information entropy that is used. A common unit of information is the bit or shannon, based on the binary logarithm. Other units include the nat, which is based on the natural logarithm, and the decimal digit, which is based on the common logarithm.
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.
In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...
Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function. In information theory, the binary entropy function, denoted or (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula: